Comparative posthearing development of inhibitory inputs to the lateral superior olive in gerbils and mice.

نویسندگان

  • Jan Walcher
  • Benjamin Hassfurth
  • Benedikt Grothe
  • Ursula Koch
چکیده

Interaural intensity differences are analyzed in neurons of the lateral superior olive (LSO) by integration of an inhibitory input from the medial nucleus of the trapezoid body (MNTB), activated by sound from the contralateral ear, with an excitatory input from the ipsilateral cochlear nucleus. The early postnatal refinement of this inhibitory MNTB-LSO projection along the tonotopic axis of the LSO has been extensively studied. However, little is known to what extent physiological changes at these inputs also occur after the onset of sound-evoked activity. Using whole-cell patch-clamp recordings of LSO neurons in acute brain stem slices, we analyzed the developmental changes of inhibitory synaptic currents evoked by MNTB fiber stimulation occurring after hearing onset. We compared these results in gerbils and mice, two species frequently used in auditory research. Our data show that neither the number of presumed input fibers nor the conductance of single fibers significantly changed after hearing onset. Also the amplitude of miniature inhibitory currents remained constant during this developmental period. In contrast, the kinetics of inhibitory synaptic currents greatly accelerated after hearing onset. We conclude that tonotopic refinement of inhibitory projections to the LSO is largely completed before the onset of hearing, whereas acceleration of synaptic kinetics occurs to a large part after hearing onset and might thus be dependent on proper auditory experience. Surprisingly, inhibitory input characteristics, as well as basic membrane properties of LSO neurons, were rather similar in gerbils and mice.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1 2 3 4 5 Comparative post - hearing development of inhibitory inputs to the 6 lateral superior olive in gerbils and mice 7 8 9

41 Interaural intensity differences are analyzed in neurons of the lateral superior olive (LSO) by 42 integration of an inhibitory input from the medial nucleus of the trapezoid body (MNTB), activated by 43 sound from the contralateral ear, with an excitatory input from the ipsilateral cochlear nucleus. The 44 early postnatal refinement of this inhibitory MNTB-LSO projection along the tonotopic...

متن کامل

Long-lasting inhibitory synaptic depression is age- and calcium-dependent.

The developmental refinement of excitatory synapses is often influenced by neuronal activity, and underlying synaptic mechanisms have been suggested. In contrast, few studies have asked whether inhibitory synapses are reorganized during development and whether this is accompanied by use-dependent changes of inhibitory synaptic strength. The topographic inhibitory projection from the medial nucl...

متن کامل

Development of sound localization mechanisms in the mongolian gerbil is shaped by early acoustic experience.

Sound localization is one of the most important tasks performed by the auditory system. Differences in the arrival time of sound at the two ears are the main cue to localize low-frequency sound in the azimuth. In the mammalian brain, such interaural time differences (ITDs) are encoded in the auditory brain stem; first by the medial superior olive (MSO) and then transferred to higher centers, su...

متن کامل

Posthearing developmental refinement of temporal processing in principal neurons of the medial superior olive.

In mammals, principal neurons of the medial superior olive (MSO) exhibit biophysical specializations that enable them to detect sound localization cues with microsecond precision. In the present study, we used whole-cell patch recordings to examine the development of the intrinsic electrical properties of these neurons in brainstem slices from postnatal day 14 (P14) to P38 gerbils. In the week ...

متن کامل

The mammalian interaural time difference detection circuit is differentially controlled by GABAB receptors during development.

Throughout development GABA(B) receptors (GABA(B)Rs) are widely expressed in the mammalian brain. In mature auditory brainstem neurons, GABA(B)Rs are involved in the short-term regulation of the strength and dynamics of excitatory and inhibitory inputs, thus modulating sound analysis. During development, GABA(B)Rs also contribute to long-term changes in input strength. Using a combination of wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 106 3  شماره 

صفحات  -

تاریخ انتشار 2011